Presentation 6: PFGE Troubleshooting

Everything you wanted to know about PFGE, but were afraid to ask...

OR

Yes, in fact, we've done that

experiment!

Trouble shooting philosophy

- Can or do we test every issue / variable?
 - Most
- Can or do we solve every issue / variable?
 - No, only consistent issues, but there are exceptions...
- Our role at PFGE Reference lab at the CDC
 - Test the big issues
 - Make recommendations

Your expectations of us:

- ✓ get trained
- receive prompt answers to questions
- ✓ get feedback on gels
- receive occasional trouble shooting assistance
- read about reviews and reports on reagent options

Our expectations of labs:

- ✓ follow protocols closely
- perform trouble shooting
- ✓ provide feedback
- follow protocols closely

Trouble shooting approach

What has changed since the last "good" gel?

- Equipment, reagent, person, isolate / strain, etc...
- Change in lab procedures / new SOPs, new vendor, contamination / decontamination event, etc...

Examine the gel closely

- Ask if the problem is:
 - in all lanes, only the isolates, only the standards, only one enzyme?
 - apparent with multiple lab personnel?
 - apparent with multiple enzymes or multiple organisms?
 - associated with a specific mapper?

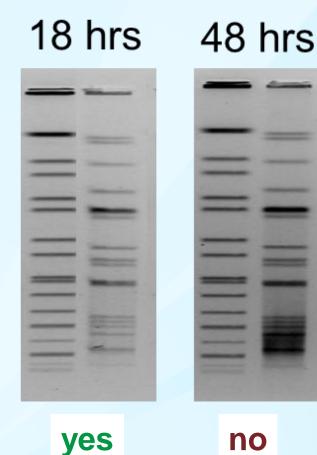
Maintain notebook of troubleshooting findings, gels

→ What is in common and what has changed?

Trouble shooting approach, continued

\Box Reagents: garbage in \rightarrow garbage out

- Always track vendors or individuals (if in-house), dates, lots, etc...
- Make and store properly room temperature, 4°C / -20°C, protect from light, dilute in TE or water, consider making aliquots, etc...
- If it looks suspicious → do not use it!
 - cloudy, stringy, precipitates, etc...
 - do not be superstitious

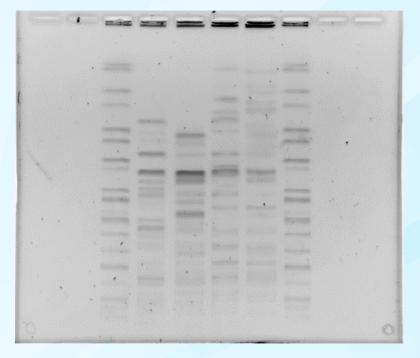


 Adverse affects may be gradual or sudden, may be pronounced in some organisms and not others or H9812

Difficulty repeating these effects and "bad gels"

- Complex experiment design, interaction of variables, protocol interpretation, unique lab environment, too many variables!!!
- All organisms, all strains, all enzymes not affected equally

Example of bad cell treatment – plates grown for too long

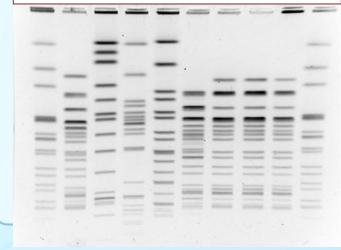


Plates should be grown for 14 – 18 hours

- Fresh cell growth
- Do not keep plates at 4°C, grow on bench, let sit out at room temperature, etc...
- Treat cells carefully
- Not all strains / serotypes similarly affected

Example of bad cell treatment – plates stored improperly

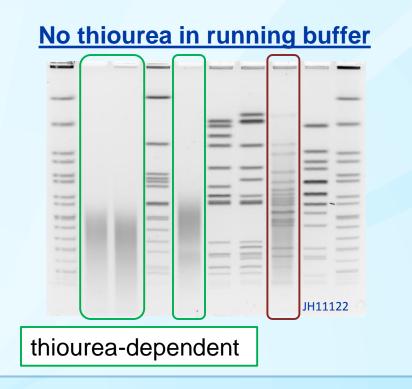
E. coli O157 cultures stored at 4C for 3 days before making cell suspensions


Plates should be grown for 14 – 18 hours Fresh cell growth Do not keep plates at 4°C, grow on bench, let sit out at room temperature, etc... Treat cells carefully Not all strains / serotypes similarly affected

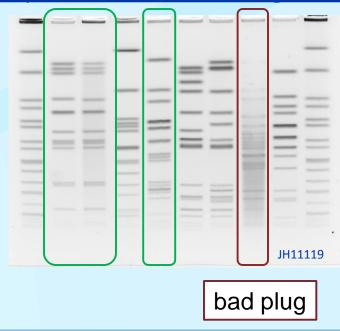
no

Thiourea-dependent or "Untypeable" Strains

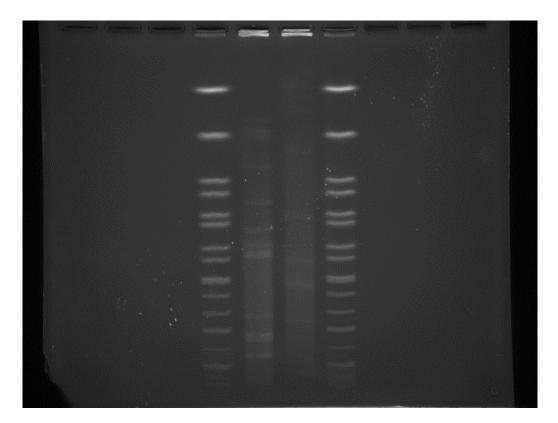
50µM thiourea



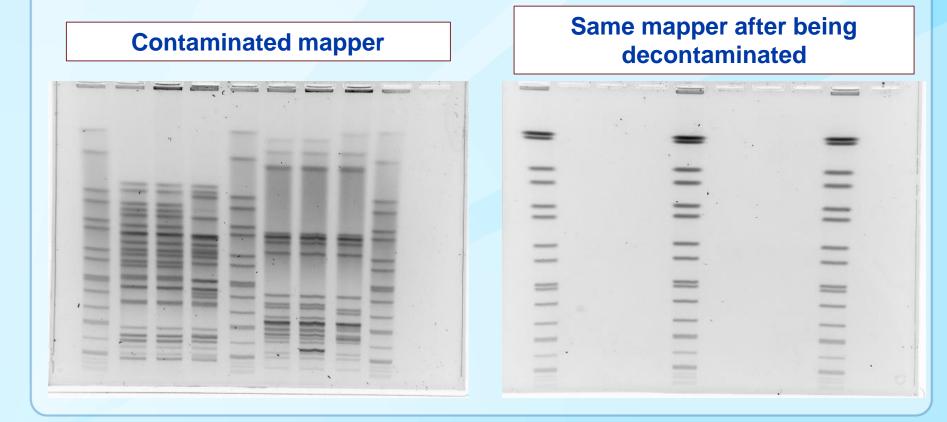
- Typical smear DNA degraded in bottom third of gel, no DNA in wells
- Add thiourea to the running buffer
 - 1g thiourea in 100ml dH_2O (10mg/ml)
 - wrap bottle in foil and store in dark
 - add 837 μ L to 2.2L 0.5X TBE at start of run (50mM)
- Do not use thiourea routinely or add directly to plugs because it is toxic
- Thiourea does not improve poor quality plugs or poor patterns
- Include a positive control on gel
 - digested plug slice of "untypeable" strain that "typed" previously when thiourea was added to buffer


Example of bad plug – thiourea will not help

Are these thiourea-dependent isolates?


- Is there DNA in the plug slice?
- Is the smear in the whole lane or just towards the bottom?
- Are there any bands present?

Incorrect stopping point – plugs stored before lysis

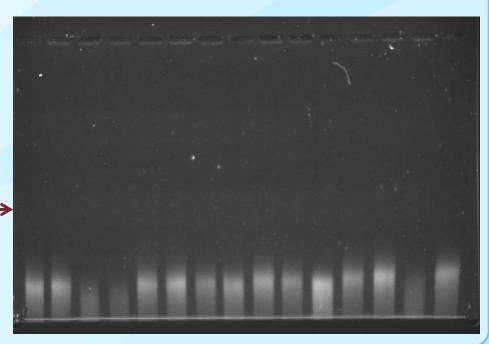


What to consider \rightarrow lysis buffer, cell suspension buffer, reagent contamination, reagent storage, cell "happiness," alteration of standardized protocol

Example of contaminated mapper

Contamination in the mapper (fungal, bacterial)

- Smearing throughout the lane (usually)
- Smearing in isolates and controls (usually)

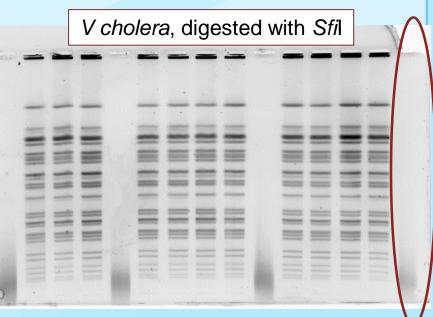


Example of Contaminated Mapper

Solution

- Drain 0.5X TBE / water from mappers / lines after each use
- Once every 3 months (or as needed)
 - circulate ~2 L 5% bleach 20 30 minutes, drain
 - circulate ~2 L dH₂O 20 30 minutes, drain, repeat at least 3X
 - leave chiller OFF

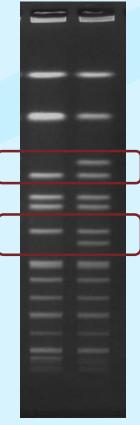
Pseudomonas species isolated from CHEF Mapper unit at CDC


Example of Contaminated Plugs

Bad Xbal / H buffer?

• Unlikely \rightarrow completely degraded DNA, no ghost bands

Solution

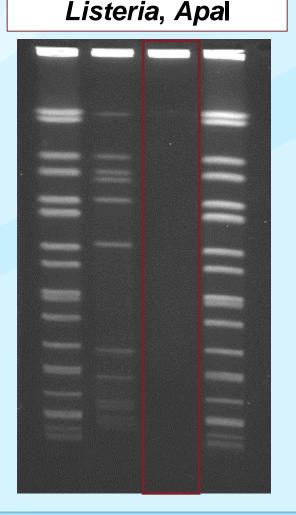

- Keep plugs in sterile TE at 4°C
- Keep track of dates identify and discard "bad" plugs
- Make a new batch of H9812 every 1 3 months, depending on testing volume, storage space
 V cholera, digested with Sfill
- Always use previously tested lot of H9812
- Make H9812 control plug
 - make new H9812 plug same day as unknowns
 - controls for plug making that day

Troubleshooting missing bands

- H9812 is the universal standard used with all organisms
 - chosen due to optimal number and distribution of bands
- Always test "new" lot of H9812 plugs with "old" lot to confirm:
 - PFGE pattern is same, including band intensity
 - concentration is similar
 - the new standards produce good quality PFGE pattern
 - if pattern is different, streak out new plate from frozen stock
- Pre-tested H9812 standard plugs can be a positive control and focus troubleshooting efforts
 - problem observed in sample lanes but **not** in standards, likely due to sample associated affect (i.e. sample plug preparation)
 - problem observed in both sample and standard lanes, likely due to step involving sample and standard plugs (i.e. enzyme digests)

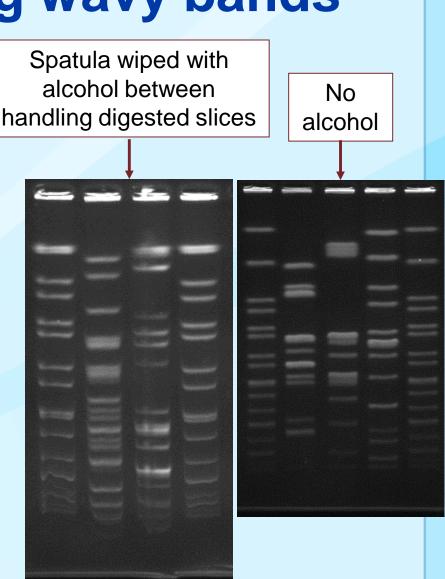
H9812 new old

Trouble shooting no bands – no digestion


- Some strains do not restrict with certain enzymes – no site or sites are "hidden"
- Appears as a large band at the top of the gel with no DNA smearing in the lane and DNA still left in the well
- It's not you it's the strain (and enzyme)!
 - E. coli, Salmonella, Listeria, Vibrio spp
 - some serotypes more often than others
 - cannot predict

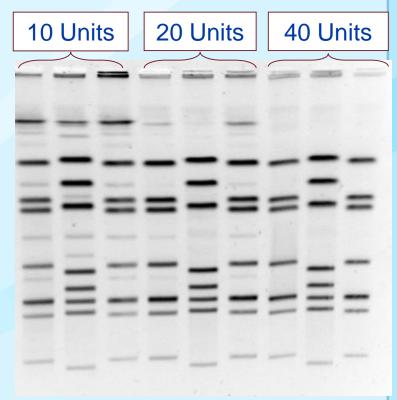
Trouble shooting no bands – no digestion

- Other slices digested with master mix are a positive control for enzyme working
- Valid pattern for that strain and can be uploaded
 - not the same as untypeable!
- Solution → digest with other enzymes (secondary +/or tertiary) for that organism


Troubleshooting wavy bands

Possible causes

- rusty, nicked, damaged razor or scalpel
- damaged plug slices, debris in gel and/or plug


Possible solutions

- use new razor or scalpel
- make new plugs
- completely melt plug agarose and mix completely with cell suspension
- completely melt gel agarose, check for cell debris
- do not use alcohol wipes between plug slices

"Ghost" or "Shadow" Bands

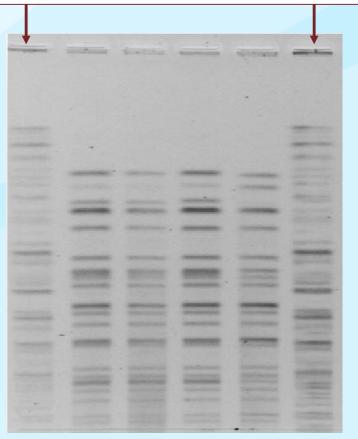
- Due to incomplete digestion or star activity
- May be the result of:
 - Poor plug quality
 - proteinase K not washed out of plug
 - enzyme inhibitors not washed out of plug
 - cell concentration too high (DNA and debris)
 - Poor enzyme and/or buffer quality
 - bad lot, change in manufacturing process
 - expired or vial opened frequently
 - Enzyme digestion not optimal
 - old/bad BSA or BSA not included in master mix
 - not enough units of enzyme
 - too many units of enzyme (star activity)
 - incubation time too short

- incubation time too long (star activity)
- incorrect incubation temperature
- incorrect buffer

Troubleshooting "ghost" bands

Possible solutions

- decrease cell suspension concentration
- wash plugs 2X more with TE buffer
- include BSA (0.1 mg/ml) in enzyme master mix
 - only use molecular grade BSA
 - make aliquots to reduce freeze/thaw cycles
- increase units of enzyme
- use concentrated (40 U/μl vs. 10 U/μl) enzyme to decrease the amount of glycerol in the master mix

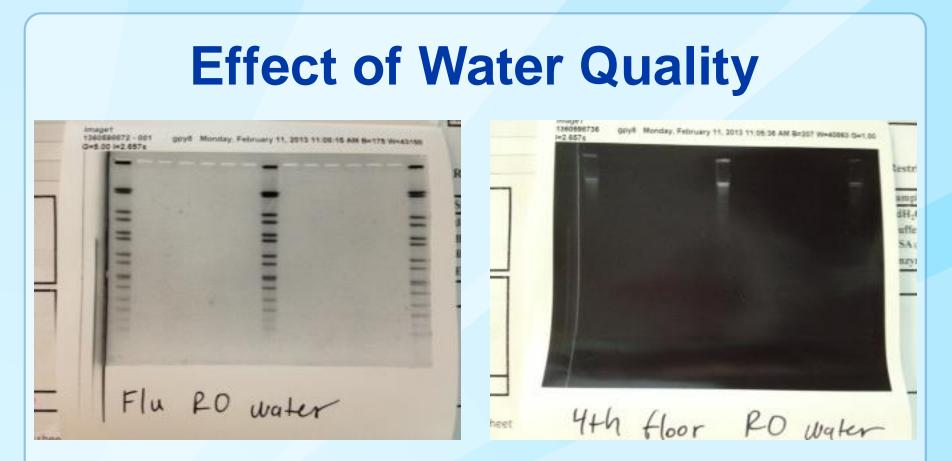

Do not mark during analysis

Troubleshooting "ghost" bands

Possible solutions, continued

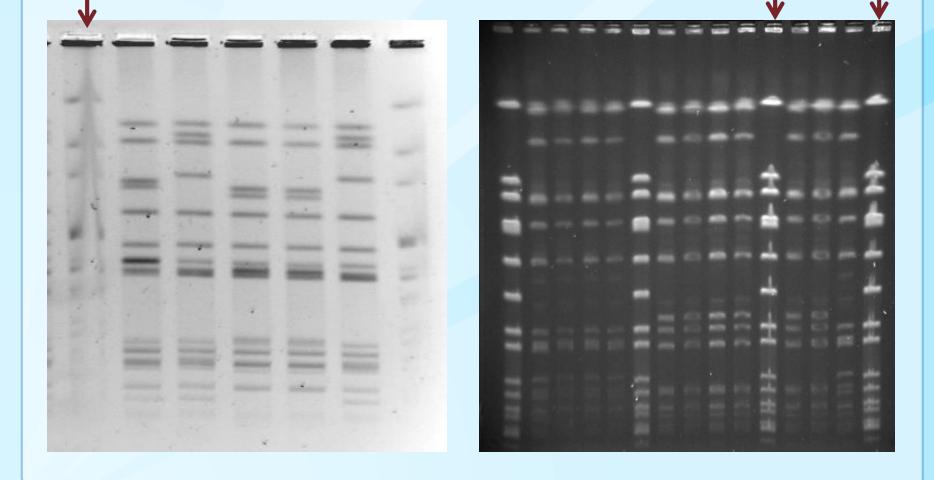
- confirm water bath temperature is correct
- follow protocol closely varies for organism and/or enzyme
 - use appropriate buffer
 - use suggested units of enzyme
 - use suggested incubation time
 - use suggested incubation temp
- new vial and/or lot and/or vendor of enzyme and/or buffer
- avoid high-fidelity and fast digest enzymes
- use different spatula for plug slices from each enzyme

H9812 double digest – enzyme not inactivated prior to loading gel


Troubleshooting "ghost" bands – reagent quality bad lot of EDTA

good lot of EDTA

- Intermittent issues with ghost bands, incomplete digestion
- 10X TBE made in-house
- Change in production of EDTA from supplier
 - same order number but no longer labeled as "For Molecular Use"
- Took several months to identify the issue
- Keep track of date, lots, etc... of all reagents


Effect of Water Quality

- Difficult to replicate issues due to water quality
- Make sure the quality of water used for reagents is the highest possible quality
 - change filters in water system on regular basis
 - avoid storing water in plastic carboys
- Use sterile ultrapure (Type I or Reagent Grade) water for all master mixes
- Non-sterile ultrapure water can be used for:
 - buffer used to make gels
 - electrophoresis running buffer
 - de-staining gels
- Never use tap water

- Sudden, dramatic, but intermittent failures; would seem to resolve and then reappear
- Tested and eliminated all possibilities organism, enzyme, buffers, etc...
- Water system was cleaned, replaced and gels have looked beautiful since then

Foreign Particles or Bubbles Embedded in Plugs

Common Questions

□ Slanted gels, run length, normalization

- Power supply building, dedicated line
- Pump flow rate check rate annually (at least), ~70 ≈ 1L / minute, if less then adjust setting, reverse flow to flush out agarose pieces, air bubbles or "kinks" in tubing
- Chiller temperature accuracy (probe can go bad)
- TBE variations between vendors and in-house, volume ~2.2L
- Water use the highest grade possible, not sterile unless indicated
 - Milli-Q is great, DI or "polished" water may be OK if good quality going in
 - quality may change over time new building, aging filter, storage in plastic carboys may leach chemicals, etc...
- Humidity, air temp, ventilation, neighboring equipment
- Agarose different lot, different kelp, dirty glassware

Normalization

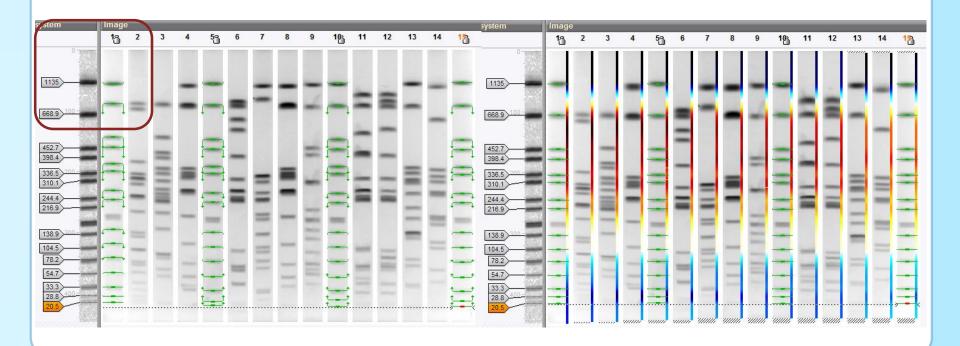
Always check normalization – if bad, do not upload

Programming error

- Accidentally programmed 30kb 600kb, instead of 700kb, etc...
- Salmonella isolates run with *E. coli* conditions and vice versa cannot be analyzed – must re-run with correct conditions

Wrong agarose

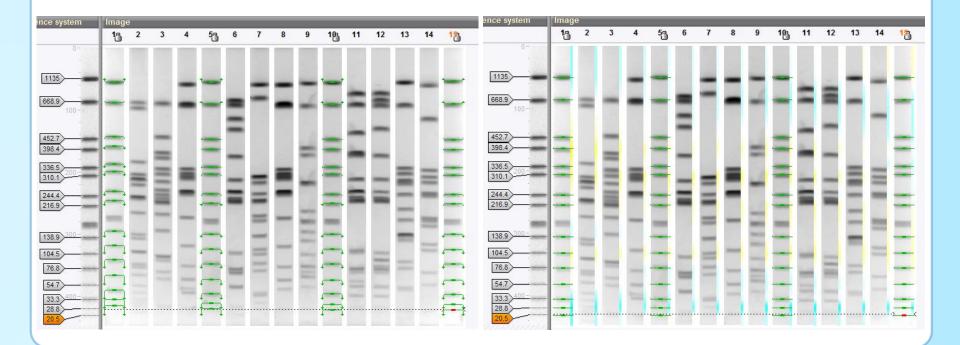
- "Megabase (Bio-Rad lot# 45100031) does not separate large molecular weight bands correctly and cannot be used
- Only SeaKem Gold (Lonza) can be used for gel running agarose


Instrument malfunction

- Electrophoresis box or "brain" may go bad
- Swap out boxes and brains to isolate the problem
- Contact Bio-Rad to have equipment repaired

Bad Normalization – wrong conditions

Gel was run with "Salmonella" conditions and analyzed in Salmonella database


- Dark distortion bars indicate poor normalization
- Re-run with 2.16 s 63.8 s (30 kb 700 kb)

Bad Normalization – wrong conditions

Gel was run with "Salmonella" conditions and analyzed in *E. coli* database


- Light distortion bars indicate proper normalization
- Strongly suggests 2.16 s 54.17 s (*E. coli* O157) conditions

Factors Causing Lane Curvature

- Gel not level when poured
- Electrophoresis chamber was not level
- Gel was not flush against black platform
- Buffer not flowing evenly or not enough buffer in electrophoresis chamber
 - CHEF Mapper requires ~2.2 L in chamber, older models require ~2.0 L
 - clean and check for agarose particles
- Equipment putting off heat near lines
- Temperature of buffer fluctuated during run, more than 14°C ± 2° C
- Broken electrode(s)
- Mapper "personality"
- Electrophoresis chamber needs to be serviced

-	-	~		-	-	-	-	-	-	-
_		-	-	-	-	-	-	-	-	-
_		-	-	-	-	-	-	-	-	
_			=	_		=	=		-	
_			=	_		=	=		=	
-			=			=	-		=	
	+		-		-				-	

Unique, sporadic, or chronic issue?

What to consider → electrical supply, power interruption, dedicated line, power surge, programming mistake, faulty instrument

Send Your Troubleshooting Questions via e-mail to:

pfge@cdc.gov

Write "Troubleshooting" in the subject line of e-mail message